skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayhan, Ismail Alperen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of highly conductive solid-state electrolytes to replace conventional liquid organic electrolytes enables radical improvements in the reliability, safety and performance of lithium batteries. Here, we report the synthesis and characterization of a new class of nonflammable solid electrolytes based on the grafting of ionic liquids onto octa-silsesquioxane. The electrolyte exhibits outstanding room-temperature ionic conductivity (∼4.8 × 10 −4 S cm −1 ), excellent electrochemical stability (up to 5 V relative to Li + /Li) and high thermal stability. All-solid-state Li metal batteries using the prepared electrolyte membrane are successfully cycled with high coulombic efficiencies at ambient temperature. The good cycling stability of the electrolyte against lithium has been demonstrated. This work provides a new platform for the development of solid polymer electrolytes for application in room-temperature lithium batteries. 
    more » « less